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The problem of the effect of a concentrated force in an isotropic (orthotropic) space has
been examined in [1—3],

The problem is investigated below by the method of complex Smirnov-Sobolev solu-
tions, generalized to a system of differential equations,

The results obtained are of elementary Hature just for a transversally isotropic solid,

1, Complex solutions of the equilibrium equations, If the poten-
tials @, ¢, ¥ are introduced by assuming
op , oY o % _ o
b= T ey Ty T YT a (4.4
then the equilibrium equations of a transversally isotropic body under the condition that
the z-axis is along the axis of elastic symmetry become

ail-}-%—gzo, %—%—2:0, aa?:o (1.2)
Ly, = AAg + Ld% / dz®2 + (L -+ F)d?y / dz*
L, = (L -+ F)Ag + LAy + Cd*y ] dz? (1.3)
Q = NAY + L™ / dz2, A = d*/dz? + d¥dy?
Here A4, L, F, N, C are elastic constants [4], Let us construct the solution of the system
(1.2) in the form @ = Re ¢° (8), ¥ = Rey° (6), x = Rex° (8) (1.4)

The variable 6 is defined by the relationship
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S§=af+fny+ vi+ F(6) =0, o = cosB, P = sinb

§=$—1'm N=¥— Yo ‘:=Z—'Zo (1'5)
where the function 7 (9) is arbitrary,
Complying with (1. 2), and utilizing the differentiation formulas {5]

Fil 1 971 9 [aBe”
ozt oy R"’TTB[TT?F( 5 )]
. 8 = —BEt-an+ v+ 1 (8 (1.6)
we obtain
4 + vLyp* + (L + Fv¥y®’ =0, L+ F o’ +(@+vC) =0 (1.7
(N + Ly =0 (1.8)

From (1,7) we deduce
A4V (L4 F)v?

L+F  Lywe |= (1.9)
i. e, the function v (8) is constant in the anisotropy case under consideration, and equals
the roots + ivq, 4- iv, of (1.9), For simplicity, we consider the v in the latter to be
real positive numbers,
A particular solution of (1,7)

P () =(L—v2C) 0, (6,),  x°' (0,) = — (L + F) 0, (8,) (1.10)
corresponds to each root v, where the function w, is arbitrary,
From (1.8) we deduce v = ivy, v5= V N/L, ¥° is arbitrary,
The variable 6, (k¢ = 1, 2, 3) is defined by the relationship

6k=akg+ﬁkniivk€ +fk(ek)':0 (1.11)
According to (1,1) 2 ® 8
_ _ had 3 303
U= Re [Z (L Vk2c)6k, ak+ 63' ]
k=1
2 ® o
3.
» = — Re [2 (L—ngc)#gk— 53'3] (1.12)
k=1
z v, ®
w=(L+ F)Re D) —F & w3 =}°’

7 k4
=1 Gk

8, =—BETan+1y(©0) (=123

Formulas (1. 12) contain the arbitrary functions @, f, and define a class of complex
solutions of the equilibrium equations of the considered anisotropic medium, An analog-
ous class of solutions can be constructed for the equilibrium equations of a medium with
a general kind of anisotropy. The selection of the potentials (1, 1) does not limit the
generality of the solutions in the class (1. 12) since a mutually one-to-one correspond-
ence can be established between them and the "complete” system of potentials govern-
ing the longitudinal and transverse displacements,

Let us examine particular cases,

a) Plane solutions, Letusput §, = 6, = const, f, = —0,then

oty = €08y, B = sindy, 8, = —1
0, = EcosBy + msind, £ ivyf (1.13)
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The solution (1, 12) is written as
u = Re {[(L — v12C) 01 + (L — v,2C)w,]lcos8, — w3sin6p}
» = Re {{(L — vi2C)o; + (L — v,2C)w,lsin 8, + w;c0804} (1.14)
w = Re [—(L 4 F)i (vio; + v10,)]

In addition to the arbitrary analytic functions e ,,it contains the arbitrary parameter
6y, the governing solution of the plane problem in a plane passing through the z -axis and
making the angle 6, with the zz-plane, Integrating (1.14) with respect to 9, between 0
and 2n, we obtain a new solution of the equilibrium equations (1.2). The development
in this direction has been expounded in [6].

b) Homogeneous solutions, We obtain these by putting f, = 0 in (1, 11),
In this case we have

ap = p % (Ryn — iv, L8, Br = —p 2 (RLE + ivyln)
8y = —BuE +ayn =Ry = (* v, =84+ (115

Just as in [7], it can be shown that solutions of the equilibrium equations of an aniso-
tropic medium corresponding to the effect of a concentrated force at a point of infinite
space or at a point of a half-space boundary are contained in this class,

2, Concentrated force in infinite space, Let us place the origin at the
point where a concentrated force of intensity P acts in the direction of the z-axis,

We put @ = iD,in the solution (1, 12), where D are real constants and w; = 0 (no
torsion), Then, taking account of (1, 15), we obtain after separating out the real part and
demanding boundedness of the radial displcement at p=20

2
(Rk*=Rk+”kZ) (2.1)

The following condition is hence imposed on the Dy
(L — v2C)Dy + (L + v2C)Dy = 0 (2.2)

We derive another relationship from the requirement of equivalence between the load-~
ing due to stresses distributed over a small sphere described around the origin and the
applied concentrated force P. We hence obtain

(F + v2C)Dy + (F + v2C)D, = —P ] 4aL (2.3)

Substituting the value of Dyinto (2, 1), we finally write

_Eo(L—}-F)'[ 1 1 :I

PT T w—v1 LRiR* T RR*

(2.4)

W= —

E, v1 (L — v2C) _ ‘Vg(L—'vl‘zC)]
Ve — V1 |: Ry Ry

Ey = P [4nLC ] v1 + v,)17?

Putting € = A4 = A 4 2u,L =y, F = A, where A, p are Lamé coefficients, we obtain
the appropriate result for an isotropic medium after resolving the indeterminacy.

3., Concentrated force at a point of a half-space, If a concentrated
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force P is applied at a point M, (zo, ¥o, 2o) of a half-space, then we write (2.4) as
U= u; 4 uy, v=o4+ v, w=w + w (3.1)
where p is the solution connected with the variable @,, defined by the relationships
8p = Eap + MBp 4 ivp (2 — 2p) = 0
ap? + Bp? =1 rp=1,2 (3.2)
Let us put the solution with subscript d in correspondence with the pg-solution u,,°,
¥pq”s Wpg® connected with the variable 0pq defined by the relationship
Opy =Bapg +MBpy —ivy2, — v,z =0
2 2 ’ 2 1 (3.3)
Upg’ +Bpg" =1, 8y =Ry, =[p"+ (vy2, + vp2)l”
This latter is defineq uniquely by the demand of coincidence of all the variables on
the half-space boundary z = 0.
We find the solution with subscript pg from the condition that the stresses o,p*, Vzxp*,
Tayp* coiresponding to the particular solution

| o o * ° o
u, _up—{—upl +"pz . Ty _.vp--{-vp1 -i—v]o2

© ©° (3’4)
wp"‘:wp—{—wpl +wy, (p=1,2)
vanish at- z = 0.
Let us introduce potentials by taking account of the absence of torsion
afpp” 0P,* pr"
Br= T T ay v Y T oz (35)
Utilizing (1.10) and taking into account that oapq = ap, Bpg = ﬁp, epq = Gp atz=0,
we obtain (F 4 v20vi0p1 + (F + v2C)vy0p5 = (F + vp2C)vpo,
(F + v20)op; + (F + v2C)op, = — (F + vp2C)op (3.6)
fr hich
om Wit FE+v2C v, v,
0, = ; Lo =iAd D g=3-—q (3.7)
rq F-}—vovp—-vql P pg- p
Therefore, we have for the radial displacement and the displacement in the z-direction
W e (L —v,*C) Ap Dy, (V2 + v, 2) Y (L+F) A~ Dy (38)
[ pqu ’ Pq Rp 7 :

The functions uppe® are unbounded for p = 0. Hence, we transform from the solution
(3. 8) to the new pg-solution obtained from (3, 8) by substituting the expression
1 — (Vp2o + Vq2)/Rpq for the fraction vpzy + vgz/ Rp, in the formula for u,,," , which
is equivalent to adding to (3, 8) a particular solution of the form

u® = A°Ep73, »° = A°np? w® =10 (3.9)
A° = const

which satisfies the boundary conditions and the conditions at infinity, The need to add
it can be discarded for other boundary conditions, say, rigid framing of the half-space
boundary, We obtain

’ =(L_quc) A:qu =_(L+ F)A,v,D, 5.0)
epq ququ 24 qu

Hpq"' = qu + VpZo -+ VoE

The final formulas for elastic displacements are written as
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= (L+F)E,s 2 L p " V1 _ Ypt+Vn _%_F"{”""iol2 v, .I

W
e (—w) © = LR R R Ryt F v C Ry, Ry
(3.41)
2
__ ——Eo Z(L C)V ‘ p vp1—vp+'vp1+F+’V ¢ 2v 1]
- =y Vi) 2 Ry Rpp F4vp’C Rppy
{(pr=23—p)

For z, = 0 we derive a solution from (3, 11) which corresponds to the effect of a con-
centrated force on a half-space boundary [6](*)

— P (L + F ) pV1Ve V1 H _ Vo 1 ]
up T 2al (Vﬁ’_ 'Vl) [A -+ v iF R;Rl‘ A 4 voiF R R.* (3 12)
_PELERvver v 4w _1_] '
Putting T 2nL(ve— 1) [A +vF Ry~ A+ vF R,

A =C=h+ 2, F =1, L=pn
in (3, 11), and resolving the indeterminacy, we obtain the known Mindlin solution [8],
4, Concentrated force at a point of composite space, Here,besides
the "reflected" pg-solution it is necessary to take account of the "refracted" pg-solution
connected with the variable Bgé defined by the relationship

8y V=0, Vg + Bpgn — vz, + iv, Mz =0 (4.9)
Particular solutions of the form
Ut ==ty b uy® bupy® b ouy VO (4.2)

are selected in such a manner that given conditions of coupling the considered transver-
sally isotropic half-spaces would be satisfied. For example, in the case of a smooth con-
tact, we have at the interface z = 0

=0, w=u® g =W=0 (4.3)
If a concentrated force of intensity P acts at the point M, (g, Yo, %) of a half-space
with the elastic constants 4, C, F,..., then in the absence of torsion we have in place
of (3.6)
L(F + v*Cyopy + L(F + Vg“C)ﬁ)pg-—La) (F(l)+v1(l)zc(l))(0pl(1) — _L(l)u.;v(1).1._.\,(1)2(;'(1))(‘,)(1)1}2 —
= —L(F + vy )0,
vi (F + vPC)copl + vy (F 4+ v,FC)mpg = vy (F -+ vpiC)ay,
V@ (PO 4 3,02 Cpap @ 4 v, @ (FO2 4y, W0y, O < o (4.4)
3’1‘0;;1 + v!a)pz + vl(l) @® 1(1) + ¥, (l)ﬁ) 2(1) = .vp(op
The relationships (4.4) allow the construction of a solution of the formulated problem
in elememary form, and in particular, obtaining the appropriate solution for an isotropic
composite space comprised of isotropic half-spaces of various materials, However, because
of the awkwardness of the formulas obtained, it will be presented just for the case when

the materials of the half-spaces are identical 4 = 4,...
Under the mentioned conditions we have

*) It is necessary to eliminate the inaccuracy in evaluating the integrals (4, 12) in [6]
p. 1103,
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Opg ="11(Spg + Cpg)  Opg) =2 (Spg— Q)

— 2 1
vp(vq1 vp} F 4 Vp C Vp +Vn

= — (4.5)
eV (Vo — V) Cpq F v 2 v,

S
1~ Vg

Substituting (4, 5) into formulas for displacements of the form (1, 12) and adding the
solution of the form (3, 9), we find the desired solution

ELF v
=B S i

= —t »p’ pP
N F - vm~C < Vo . Vo )}
*®
F + V *C RPP: RPPI Rpp,(anp,(D
v, —2v v
W e L—v 2C)v |2~ P P
(‘VI . V2)2 2 ( 10x ) I [ Rp le
F + Vil sV, Vo
S <Rp +7 m)] (4.6)
P Dpe PD;
2 i/, * _
Rop =10+ (vp,2 — vz, Ry WV =Ry W vz — vz,

By a passage to the limit, the appropriate solution can be derived for an isotropic
medium from (4, 6).

For z; = 0 we again obtain (3. 12), which is suitable to describe the state of stress of
both half-spaces,

It is easy to examine the case when the interface between the half-spaces is not per-
pendicular to the axis of elastic symmetry. For example, if the plane y = 0 is the inter-
face, then it is convenient to represent the solution (2, 4) in the form

u == —Re [(L — ’V12C)O£1(61{)_1 1 ‘I“ (L — vng)dQ(Gzl)‘lmz]
= —Re[(L — v20)By(8:") w1 + (L — v,20)By(8, ) w,]
w = (L + F)Re[(8:) o - (8,) ,] (4.7)
§,=af+Bn+L=0, 8 =aE+B (p=t2)
oy =da,/do,, B, =dB,/d8,, ap=0,
Bp=i 14 v, P4 6,5 o,=DB8" (4.8}

The "reflected” and "refracted” solutions are connected with variables defined by
the relationships

Here

8, =B — By —Bpy, =0 (;,:1, 2
) (49 _ — qg=1, 2, 3}
8oy M =ap Ve By pr0+§~0 q
Apg = Opgs g =t V” Pt Opg"

N
All the variables coincide at the interface, The solutions metioned above, with sub-
script pg', have been chosen from the accepted coupling conditions, The scheme of the

solution remains as before,
Let us note that the solution does not turn out to be elementary for yy == 0, and re~
quires solution of a fourth power algebraic equation, However, for y, = 0,1.e. under the
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effect of a concentrated force along the interface, it again becomes elementary,
In conclusion, let us note the possibility of applying the method to soive the same
problems for media with a more general kind of anisotropy.

BIBLIOGRAPHY

1, Kréner, E,, DasFundamentalintegral der anisotropen elastischen Differential~
gleichungen, Z, fiir Physic, Bd, 136, H,4, 1953,

2, Basheleishvili, M, O,, On fundamental solutions of the differential equations
of an anisotropic elastic body. Soobshch, Akad, Nauk GruzSSR, Vol. 18, N4, 1957,

3, Kupradze, V,D,,Gegeliia,T,G,, Basheleishvili, M, 0, and Bur-
chuladze, T,V,, Three~-dimensional problems of mathematical elasticity
theory, Ch.XIII, Tbilisi, Thilisi Univ, Press, 1968,

4, Love, A,, Mathematical Theory of Elasticity (Russian translation). Moscow-
Leningrad, ONTI, 1937,

5. Sveklo, V, A,, On the solution of dynamic problems in the plane theory of
elasticity for anisotropic body, PMM Vol, 25, N5, 1961,

6. Sveklo, V, A,, Boussinesq type problems for the anisotropic half-space, PMM
Vol, 28, Ne5, 1964,

7. Frank, P, and Von Mises, R, , Differential and Integral Equations of Mathe-
matical Physics,pt.2,(Russian translation), Moscow-Leningrad, ONTI, 1937,

8, Lur'e, A,1,, Three-dimensional Problems of Elasticity Theoty, Moscow, Gos-

tekhizdat, 1955, Translated by M, D, F,

STRESS CONDITIONS IN PLATES
REINFORCED BY STIFFENING RIBS

PMM Vol, 33, N3, 1969, pp.538-543
A, I, KALANDIIA
(Tbilisi)
(Received December 24, 1968)
The problem of sresses transmitted through a stiffening rib in a plate is usually examined
under various simplifying assumptions (see e, g, [1—~5]).

A sufficiently simple method is proposed below for effective construction of solutions
for problems of this type, This approach based on known methods of solution of planar
problems permits to construct the solution in finite form,

The solution is found in integrals of the Cauchy type, The density of these integrals
is determined by means of Fourier transformation,

1, The method of solution will be presented using as an example an elastic haif-plane
reinforced by a semi-infinite straight stringer (stiffening rib) continuously attached to the
plane along the boundary,

We shall assume that the stresses (in the plate and in the stringer) are produced by only
one axial force applied at the end of the stringer,

We locate the plate in the lower half-plane of the plane of the complex variable
z == z - iy and let the stringer coincide with the positive part of the real axis, One end



